dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Variations in the altitude of the F2 peak associated with trough-formation processes
VerfasserIn R. I. Crickmore, B. Jenkins, G. J. Bailey
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 14, no. 6 ; Nr. 14, no. 6, S.628-636
Datensatznummer 250012322
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-14-628-1996.pdf
 
Zusammenfassung
A novel approach is described which can help to determine, from ground-based data, which of the possible production mechanisms for the mid-latitude F-region ionospheric trough is dominant during a particular event. This approach involves numerically modelling the possible causal mechanisms of the mid-latitude trough to see how each will affect the altitude of the F2-layer electron-concentration peak (hmF2), and then comparing these predictions with the observed variation of hmF2 during trough formation. The modelling work predicts that, if the neutral-wind velocity does not vary, hmF2 will remain almost constant if the trough is formed via stagnation, but will rise if it is formed as a result of high ion velocities or neutral upwelling. Observations made at Halley (76°S, 27°W, L=4.2), Antarctica, show that most frequently the only changes in hmF2 during trough formation are those expected due to variations in the neutral wind, which suggests that stagnation is the most common production mechanism. During the most geomagnetically active night studied, on which Ap varied between 18 and 32, there was a rise in hmF2 that cannot be explained by changes in the neutral wind. On this night the plasma also decayed faster, and the poleward edge of the trough was seen earlier than on other nights. These differences, together with the fact that the ion velocities remained relatively low, suggest the trough was caused by a change in neutral composition, possibly advected into the observing area.
 
Teil von