dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Compressive fluctuations in the solar wind and their polytropic index
VerfasserIn B. Bavassano, R. Bruno, H. Rosenbauer
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 14, no. 5 ; Nr. 14, no. 5, S.510-517
Datensatznummer 250012289
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-14-510-1996.pdf
 
Zusammenfassung
Magnetohydrodynamic compressive fluctuations of the interplanetary plasma in the region from 0.3 to 1 AU have been characterized in terms of their polytropic index. Following Chandrasekhar's approach to polytropic fluids, this index has been determined through a fit of the observed variations of density and temperature. At least three different classes of fluctuations have been identified: (1) variations at constant thermal pressure, in low-speed solar wind and without a significant dependence on distance, (2) adiabatic variations, mainly close to 1 AU and without a relevant dependence on wind speed, and (3) variations at nearly constant density, in fast wind close to 0.3 AU. Variations at constant thermal pressure are probably a subset of the ensemble of total-pressure balanced structures, corresponding to cases in which the magnetic field magnitude does not vary appreciably throughout the structure. In this case the pressure equilibrium has to be assured by its thermal component only. The variations may be related to small flow-tubes with approximately the same magnetic-field intensity, convected by the wind in conditions of pressure equilibrium. This feature is mainly observed in low-velocity solar wind, in agreement with the magnetic topology (small open flow-tubes emerging through an ensemble of closed structures) expected for the source region of slow wind. Variations of adiabatic type may be related to magnetosonic waves excited by pressure imbalances between contiguous flow-tubes. Such imbalances are probably built up by interactions between wind flows with different speeds in the spiral geometry induced by the solar rotation. This may account for the fact that they are mainly found at a large distance from the sun. Temperature variations at almost constant density are mostly found in fast flows close to the sun. These are the solar wind regions with the best examples of incompressible behaviour. They are characterized by very stable values for particle density and magnetic intensity, and by fluctuations of Alfvénic type. It is likely that temperature fluctuations in these regions are a remnant of thermal features in the low solar atmosphere. In conclusion, the polytropic index appears to be a useful tool to understand the nature of the compressive turbulence in the interplanetary plasma, as far as the frozen-in magnetic field does not play a crucial role.
 
Teil von