dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel An artificial neural network predictor for tropospheric surface duct phenomena
VerfasserIn S. A. Isaakidis, I. N. Dimou, T. D. Xenos, N. A. Dris
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 14, no. 5 ; Nr. 14, no. 5 (2007-09-03), S.569-573
Datensatznummer 250012273
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-14-569-2007.pdf
 
Zusammenfassung
In this work, an artificial neural network (ANN) model is developed and used to predict the presence of ducting phenomena for a specific time, taking into account ground values of atmospheric pressure, relative humidity and temperature. A feed forward backpropagation ANN is implemented, which is trained, validated and tested using atmospheric radiosonde data from the Helliniko airport, for the period from 1991 to 2004. The network's quality and generality is assessed using the Area Under the Receiver Operating Characteristics (ROC) Curves (AUC), which resulted to a mean value of about 0.86 to 0.90, depending on the observation time. In order to validate the ANN results and to evaluate any further improvement options of the proposed method, the problem was additionally treated using Least Squares Support Vector Machine (LS-SVM) classifiers, trained and tested with identical data sets for direct performance comparison with the ANN. Furthermore, time series prediction and the effect of surface wind to the presence of tropospheric ducts appearance are discussed. The results show that the ANN model presented here performs efficiently and gives successful tropospheric ducts predictions.
 
Teil von