dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Modelling field scale water partitioning using on-site observations in sub-Saharan rainfed agriculture
VerfasserIn H. Makurira, H. H. G. Savenije, S. Uhlenbrook
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 14, no. 4 ; Nr. 14, no. 4 (2010-04-06), S.627-638
Datensatznummer 250012265
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-14-627-2010.pdf
 
Zusammenfassung
Smallholder rainfed farming systems generally realise sub-optimal crop yields which are largely attributed to dry spell occurrences during crop growth stages. However, through the introduction of appropriate farming practices, it is possible to substantially increase yield levels even with little and highly variable rainfall. The presented results follow research conducted in the Makanya catchment in northern Tanzania where gross rainfall amounts to less than 400 mm/season which is insufficient to support staple food crops (e.g. maize). The yields from farming system innovations (SIs), which are basically alternative cultivation techniques, are compared against traditional farming practices. The SIs tested in this research are runoff harvesting used in combination with in-field trenches and soil bunds (fanya juus). These SIs aim to reduce soil and nutrient loss from the field and, more importantly, promote in-field infiltration and water retention. Water balance components have been observed in order to study water partitioning processes for the "with" and "without" SI scenarios. Based on rainfall, soil evaporation, transpiration, runoff and soil moisture measurements, a water balance model has been developed to simulate soil moisture variations over the growing season. Simulation results show that, during the field trials, the average productive transpiration flow ranged between 1.1–1.4 mm d−1 in the trial plots compared to 0.7–1.0 mm d−1 under traditional tillage practice. Productive transpiration processes accounted for 23–29% while losses to deep percolation accounted for 33–48% of the available water. The field system has been successfully modelled using the spreadsheet-based water balance 1-D model. Conclusions from the research are that the SIs that were tested are effective in enhancing soil moisture retention at field scale and that diversions allow crop growth moisture conditions to be attained with early rains. From the partitioning analysis, it is also concluded that there is more scope for efficient utilisation of the diverted runoff water if storage structures could be installed to minimise runoff and deep percolation and, hence, regulate water flow to the root zone when required.
 
Teil von