dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Multifractal scaling of the kinetic energy flux in solar wind turbulence
VerfasserIn E. Marsch, C.-Y. Tu, H. Rosenbauer
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 14, no. 3 ; Nr. 14, no. 3, S.259-269
Datensatznummer 250012205
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-14-259-1996.pdf
 
Zusammenfassung
The geometrical and scaling properties of the energy flux of the turbulent kinetic energy in the solar wind have been studied. Using present experimental technology in solar wind measurements we cannot directly measure the real volumetric dissipation rate, ε(t), but are constrained to represent it by its surrogate the energy flux near the dissipation range at the proton gyro scale. There is evidence for the multifractal nature of the so defined dissipation field ε(t), a result derived from the scaling exponents of its statistical moments. The generalized dimension Dq has been determined and reveals that the dissipation field has a multifractal structure, which is not compatible with a scale-invariant cascade. The related multifractal spectrum α has been estimated for the first time for MHD turbulence in the solar wind. Its features resemble those obtained for turbulent fluids and other nonlinear multifractal systems. The generalized dimension Dq can for turbulence in high-speed streams be fitted well by the functional dependence of the p-model with a comparatively large parameter p1=0.87, indicating a strongly intermittent multifractal energy cascade. The experimental value for Dp/3 used in the scaling exponent s(p) of the velocity structure function gives an exponent that can describe some of the observations. The scaling exponent μ of the autocorrelation function of ε (t) has also been directly evaluated, being 0.37. Finally, the mean dissipation rate was determined, which could be used in solar wind heating models.
 
Teil von