dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting
VerfasserIn E. Toth
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 13, no. 9 ; Nr. 13, no. 9 (2009-09-03), S.1555-1566
Datensatznummer 250011988
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-13-1555-2009.pdf
 
Zusammenfassung
This paper presents the application of a modular approach for real-time streamflow forecasting that uses different system-theoretic rainfall-runoff models according to the situation characterising the forecast instant. For each forecast instant, a specific model is applied, parameterised on the basis of the data of the similar hydrological and meteorological conditions observed in the past. In particular, the hydro-meteorological conditions are here classified with a clustering technique based on Self-Organising Maps (SOM) and, in correspondence of each specific case, different feed-forward artificial neural networks issue the streamflow forecasts one to six hours ahead, for a mid-sized case study watershed. The SOM method allows a consistent identification of the different parts of the hydrograph, representing current and near-future hydrological conditions, on the basis of the most relevant information available in the forecast instant, that is, the last values of streamflow and areal-averaged rainfall. The results show that an adequate distinction of the hydro-meteorological conditions characterising the basin, hence including additional knowledge on the forthcoming dominant hydrological processes, may considerably improve the rainfall-runoff modelling performance.
 
Teil von