dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Air mass exchange across the polar vortex edge during a simulated major stratospheric warming
VerfasserIn G. Günther, M. Dameris
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 13, no. 7 ; Nr. 13, no. 7, S.745-756
Datensatznummer 250011918
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-13-745-1995.pdf
 
Zusammenfassung
The dynamics of the polar vortex in winter and spring play an important role in explaining observed low ozone values. A quantification of physical and chemical processes is necessary to obtain information about natural and anthropogenic causes of fluctuations of ozone. This paper aims to contribute to answering the question of how permeable the polar vortex is. The transport into and out of the vortex ("degree of isolation") remains the subject of considerable debate. Based on the results of a three-dimensional mechanistic model of the middle atmosphere, the possibility of exchange of air masses across the polar vortex edge is investigated. Additionally the horizontal and vertical structure of the polar vortex is examined. The model simulation used for this study is related to the major stratospheric warming observed in February 1989. The model results show fair agreement with observed features of the major warming of 1989. Complex structures of the simulated polar vortex are illustrated by horizontal and vertical cross sections of potential vorticity and inert tracer. A three-dimensional view of the polar vortex enables a description of the vortex as a whole. During the simulation two vortices and an anticyclone, grouped together in a very stable tripolar structure, and a weaker, more amorphous anticyclone are formed. This leads to the generation of small-scale features. The results also indicate that the permeability of the vortex edges is low because the interior of the vortices remain isolated during the simulation.
 
Teil von