dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Flash-flood forecasting by means of neural networks and nearest neighbour approach – a comparative study
VerfasserIn A. Piotrowski, J. J. Napiórkowski, P. M. Rowiński
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 13, no. 4 ; Nr. 13, no. 4 (2006-08-25), S.443-448
Datensatznummer 250011813
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-13-443-2006.pdf
 
Zusammenfassung
In this paper, Multi-Layer Perceptron and Radial-Basis Function Neural Networks, along with the Nearest Neighbour approach and linear regression are utilized for flash-flood forecasting in the mountainous Nysa Klodzka river catchment. It turned out that the Radial-Basis Function Neural Network is the best model for 3- and 6-h lead time prediction and the only reliable one for 9-h lead time forecasting for the largest flood used as a test case.
 
Teil von