dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Tropospheric distribution of sulphate aerosols mass and number concentration during INDOEX-IFP and its transport over the Indian Ocean: a GCM study
VerfasserIn S. Verma, O. Boucher, M. Shekar Reddy, H. C. Upadhyaya, P. Van, F. S. Binkowski, O. P. Sharma
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 12, no. 14 ; Nr. 12, no. 14 (2012-07-18), S.6185-6196
Datensatznummer 250011321
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-12-6185-2012.pdf
 
Zusammenfassung
The sulphate aerosols mass and number concentration during the Indian Ocean Experiment (INDOEX) Intensive Field Phase-1999 (INDOEX-IFP) has been simulated using an interactive chemistry GCM. The model considers an interactive scheme for feedback from chemistry to meteorology with internally resolving microphysical properties of aerosols. In particular, the interactive scheme has the ability to predict both particle mass and number concentration for the Aitken and accumulation modes as prognostic variables.

On the basis of size distribution retrieved from the observations made along the cruise route during IFP-1999, the model successfully simulates the order of magnitude of aerosol number concentration. The results show the southward migration of minimum concentrations, which follows ITCZ (Inter Tropical Convergence Zone) migration. Sulphate surface concentration during INDOEX-IFP at Kaashidhoo (73.46° E, 4.96° N) gives an agreement within a factor of 2 to 3. The measured aerosol optical depth (AOD) from all aerosol species at KCO was 0.37 ± 0.11 while the model simulated sulphate AOD ranged from 0.05 to 0.11. As sulphate constitutes 29% of the observed AOD, the model predicted values of sulphate AOD are hence fairly close to the measured values. The model thus has capability to predict the vertically integrated column sulphate burden. Furthermore, the model results indicate that Indian contribution to the estimated sulphate burden over India is more than 60% with values upto 40% over the Arabian Sea.
 
Teil von