|
Titel |
Three-dimensional earthquake analysis of roller-compacted concrete dams |
VerfasserIn |
M. E. Kartal |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1561-8633
|
Digitales Dokument |
URL |
Erschienen |
In: Natural Hazards and Earth System Science ; 12, no. 7 ; Nr. 12, no. 7 (2012-07-24), S.2369-2388 |
Datensatznummer |
250010998
|
Publikation (Nr.) |
copernicus.org/nhess-12-2369-2012.pdf |
|
|
|
Zusammenfassung |
Ground motion effect on a roller-compacted concrete (RCC) dams in the
earthquake zone should be taken into account for the most critical
conditions. This study presents three-dimensional earthquake response of a
RCC dam considering geometrical non-linearity. Besides, material and
connection non-linearity are also taken into consideration in the
time-history analyses. Bilinear and multilinear kinematic hardening
material models are utilized in the materially non-linear analyses for
concrete and foundation rock respectively. The contraction joints inside the
dam blocks and dam–foundation–reservoir interaction are modeled by the
contact elements. The hydrostatic and hydrodynamic pressures of the
reservoir water are modeled with the fluid finite elements based on the
Lagrangian approach. The gravity and hydrostatic pressure effects are
employed as initial condition before the strong ground motion. In the
earthquake analyses, viscous dampers are defined in the finite element model
to represent infinite boundary conditions. According to numerical solutions,
horizontal displacements increase under hydrodynamic pressure. Besides,
those also increase in the materially non-linear analyses of the dam. In
addition, while the principle stress components by the hydrodynamic pressure
effect the reservoir water, those decrease in the materially non-linear
time-history analyses. |
|
|
Teil von |
|
|
|
|
|
|