dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Comparison of data-driven methods for downscaling ensemble weather forecasts
VerfasserIn  Xiaoli Liu, P. Coulibaly, N. Evora
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 12, no. 2 ; Nr. 12, no. 2 (2008-03-20), S.615-624
Datensatznummer 250010580
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-12-615-2008.pdf
 
Zusammenfassung
This study investigates dynamically different data-driven methods, specifically a statistical downscaling model (SDSM), a time lagged feedforward neural network (TLFN), and an evolutionary polynomial regression (EPR) technique for downscaling numerical weather ensemble forecasts generated by a medium range forecast (MRF) model. Given the coarse resolution (about 200-km grid spacing) of the MRF model, an optimal use of the weather forecasts at the local or watershed scale, requires appropriate downscaling techniques. The selected methods are applied for downscaling ensemble daily precipitation and temperature series for the Chute-du-Diable basin located in northeastern Canada. The downscaling results show that the TLFN and EPR have similar performance in downscaling ensemble daily precipitation as well as daily maximum and minimum temperature series whatever the season. Both the TLFN and EPR are more efficient downscaling techniques than SDSM for both the ensemble daily precipitation and temperature.
 
Teil von