dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Characteristics, seasonality and sources of carbonaceous and ionic components in the tropical aerosols from Indian region
VerfasserIn C. M. Pavuluri, K. Kawamura, S. G. Aggarwal, T. Swaminathan
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 11, no. 15 ; Nr. 11, no. 15 (2011-08-11), S.8215-8230
Datensatznummer 250010000
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-11-8215-2011.pdf
 
Zusammenfassung
To better characterize the tropical aerosols in Indian region, PM10 samples collected from Chennai, India (13.04° N; 80.17° E) were analyzed for carbonaceous and water-soluble ionic components. Concentration ranges of elemental carbon (EC) and organic carbon (OC) were 2.4–14 μg m−3 (ave. 6.5 μg m−3) and 3.2–15.6 μg m−3 (ave. 9.1 μg m−3) in winter samples whereas they were 1.1–2.5 μg m−3 (ave. 1.6 μg m−3) and 4.1–17.6 μg m−3 (ave. 9.7 μg m−3) in summer samples, respectively. Concentration of secondary organic carbon (SOC) retrieved from EC-tracer method was 4.6±2.8 μg m−3 in winter and 4.3±2.8 μg m−3 in summer. OC accounted for 38.5±14 % (n = 49) of combined concentrations of carbonaceous and ionic components in PM10. We also found that OC concentrations are generally higher than those of SO42− (8.8±2.5 μg m−3 and 4.1±2.7 μg m−3 in winter and summer, respectively), which was the most abundant ionic species (57 %) followed by NH4+ (15 %) >NO3>Cl>K+>Na+> Ca2+>MSA>Mg2+. The mass fractions of EC, organic matter (OM) and ionic species varied seasonally, following the air mass trajectories and corresponding source strength. Based on mass concentration ratios of selected components and relations of EC and OC to marker species, we found that biofuel/biomass burning is a major source of atmospheric aerosols in South and Southeast Asia. The high concentrations of SOC and WSOC/OC ratios (ave. 0.45; n = 49) as well as good correlations between SOC and WSOC suggest that the secondary production of organic aerosols during long-range atmospheric transport is also significant in this region. This study provides the baseline data of carbonaceous aerosols for southern part of the Indian subcontinent.
 
Teil von