dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Examination of three practical run-up models for assessing tsunami impact on highly populated areas
VerfasserIn A. Muhari, F. Imamura, S. Koshimura, J. Post
Medientyp Artikel
Sprache Englisch
ISSN 1561-8633
Digitales Dokument URL
Erschienen In: Natural Hazards and Earth System Science ; 11, no. 12 ; Nr. 11, no. 12 (2011-12-02), S.3107-3123
Datensatznummer 250009819
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/nhess-11-3107-2011.pdf
 
Zusammenfassung
This paper describes the examination of three practical tsunami run-up models that can be used to assess the tsunami impact on human beings in densely populated areas. The first of the examined models applies a uniform bottom roughness coefficient throughout the study area. The second uses a very detailed topographic data set that includes the building height information integrated on a Digital Elevation Model (DEM); and the third model utilizes different bottom roughness coefficients, depending on the type of land use and on the percentage of building occupancy on each grid cell. These models were compared with each other by taking the one with the most detailed topographic data (which is the second) as reference. The analysis was performed with the aim of identifying how specific features of high resolution topographic data can influence the tsunami run-up characteristics. Further, we promote a method to be used when very detailed topographic data is unavailable and discuss the related limitations. To this purpose we demonstrate that the effect of buildings on the tsunami flow can be well modeled by using an equivalent roughness coefficient if the topographic data has no information of building height. The results from the models have been utilized to quantify the tsunami impact by using the tsunami casualty algorithm. The models have been applied in Padang city, Indonesia, which is one of the areas with the highest potential of tsunami risk in the world.
 
Teil von