dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Neural network modelling of non-linear hydrological relationships
VerfasserIn R. J. Abrahart, L. M. See
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 11, no. 5 ; Nr. 11, no. 5 (2007-09-20), S.1563-1579
Datensatznummer 250009468
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-11-1563-2007.pdf
 
Zusammenfassung
Two recent studies have suggested that neural network modelling offers no worthwhile improvements in comparison to the application of weighted linear transfer functions for capturing the non-linear nature of hydrological relationships. The potential of an artificial neural network to perform simple non-linear hydrological transformations under controlled conditions is examined in this paper. Eight neural network models were developed: four full or partial emulations of a recognised non-linear hydrological rainfall-runoff model; four solutions developed on an identical set of inputs and a calculated runoff coefficient output. The use of different input combinations enabled the competencies of solutions developed on a reduced number of parameters to be assessed. The selected hydrological model had a limited number of inputs and contained no temporal component. The modelling process was based on a set of random inputs that had a uniform distribution and spanned a modest range of possibilities. The initial cloning operations permitted a direct comparison to be performed with the equation-based relationship. It also provided more general information about the power of a neural network to replicate mathematical equations and model modest non-linear relationships. The second group of experiments explored a different relationship that is of hydrological interest; the target surface contained a stronger set of non-linear properties and was more challenging. Linear modelling comparisons were performed against traditional least squares multiple linear regression solutions developed on identical datasets. The reported results demonstrate that neural networks are capable of modelling non-linear hydrological processes and are therefore appropriate tools for hydrological modelling.
 
Teil von