dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Nonlinear dimensionality reduction in climate data
VerfasserIn A. J. Gámez, C. S. Zhou, A. Timmermann, J. Kurths
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 11, no. 3 ; Nr. 11, no. 3 (2004-09-13), S.393-398
Datensatznummer 250009244
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-11-393-2004.pdf
 
Zusammenfassung
Linear methods of dimensionality reduction are useful tools for handling and interpreting high dimensional data. However, the cumulative variance explained by each of the subspaces in which the data space is decomposed may show a slow convergence that makes the selection of a proper minimum number of subspaces for successfully representing the variability of the process ambiguous. The use of nonlinear methods can improve the embedding of multivariate data into lower dimensional manifolds. In this article, a nonlinear method for dimensionality reduction, Isomap, is applied to the sea surface temperature and thermocline data in the tropical Pacific Ocean, where the El Niño-Southern Oscillation (ENSO) phenomenon and the annual cycle phenomena interact. Isomap gives a more accurate description of the manifold dimensionality of the physical system. The knowledge of the minimum number of dimensions is expected to improve the development of low dimensional models for understanding and predicting ENSO.
 
Teil von