dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Atmospheric lifetimes and Ozone Depletion Potentials of trans-1-chloro-3,3,3-trifluoropropylene and trans-1,2-dichloroethylene in a three-dimensional model
VerfasserIn K. O. Patten, D. J. Wuebbles
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 10, no. 22 ; Nr. 10, no. 22 (2010-11-19), S.10867-10874
Datensatznummer 250008899
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-10-10867-2010.pdf
 
Zusammenfassung
The chloroalkenes trans-1-chloro-3,3,3-trifluoropropylene (tCFP) and trans-1,2-dichloroethylene (tDCE) have been proposed as candidate replacements for other compounds in current use that cause concerns regarding potential environmental effects including destruction of stratospheric ozone. Because tCFP and tDCE contain chlorine atoms, the effects of these short-lived compounds on stratospheric ozone must be established. In this study, we derive the atmospheric lifetimes and Ozone Depletion Potentials (ODPs) for tCFP and for tDCE assuming emissions from land surfaces at latitudes 30° N to 60° N using the MOZART 3 three-dimensional model of atmospheric chemistry and physics. 53% of the ozone loss due to tCFP and 98% of the ozone loss due to tDCE take place in the troposphere, rather than in the stratosphere as generally expected from longer-lived chlorocarbons. The atmospheric lifetime of tCFP against chemical reaction is 40.4 days, and its ODP is quite small at 0.00034. The tDCE atmospheric lifetime is 12.7 days, and its ODP is 0.00024, which is the lowest ODP found for any chlorocarbon we have studied. Our study suggests that chlorine from tCFP and tDCE are unlikely to affect ozone at quantities likely to be emitted to the atmosphere.
 
Teil von