dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Observations of OH and HO2 radicals over West Africa
VerfasserIn R. Commane, C. F. A. Floquet, T. Ingham, D. Stone, M. J. Evans, D. E. Heard
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 10, no. 18 ; Nr. 10, no. 18 (2010-09-17), S.8783-8801
Datensatznummer 250008779
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-10-8783-2010.pdf
 
Zusammenfassung
The hydroxyl radical (OH) plays a key role in the oxidation of trace gases in the troposphere. However, observations of OH and the closely related hydroperoxy radical (HO2) have been sparse, especially in the tropics. Based on a low-pressure laser-induced fluorescence technique (FAGE – Fluorescence Assay by Gas Expansion), an instrument has been developed to measure OH and HO2 aboard the Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft. During the African Monsoon Multidisciplinary Analyses (AMMA) campaign, observations of OH and HO2 (HOx) were made in the boundary layer and free troposphere over West Africa on 13 flights during July and August 2006. Mixing ratios of both OH and HO2 were found to be highly variable, but followed a diurnal cycle: OH varied from 1.3 pptv to below the instrumental limit of detection, with a median mixing ratio of 0.17 pptv. HO2 varied from 42.7 pptv to below the limit of detection, with a median mixing ratio of 8.0 pptv. A median HO2/OH ratio of 95 was observed. Daytime OH observations were compared with the primary production rate of OH from ozone photolysis in the presence of water vapour. Daytime HO2 observations were generally reproduced by a simple steady-state HOx calculation, where HOx was assumed to be formed from the primary production of OH and lost through HO2 self-reaction. Deviations between the observations and this simple model were found to be grouped into a number of specific cases: (a) within cloud, (b) in the presence of high levels of isoprene in the boundary layer and (c) within a biomass burning plume. HO2 was sampled in and around cloud, with significant short-lived reductions of HO2 observed. Up to 9 pptv of HO2 was observed at night, with HO2 above 6 pptv observed at altitudes above 6 km. In the forested boundary layer, HO2 was underestimated by a steady state calculation at altitudes below 500 m but overestimated between 500 m and 2 km. In a biomass burning plume, observed HO2 concentrations were significantly below those calculated.
 
Teil von