dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Mid-level synoptic analysis of flood-generating systems in South-west of Iran (case study: Dalaki watershed river basin)
VerfasserIn A. A. Sabziparvar, A. Parandeh, H. Lashkari, H. Yazdanpanah
Medientyp Artikel
Sprache Englisch
ISSN 1561-8633
Digitales Dokument URL
Erschienen In: Natural Hazards and Earth System Science ; 10, no. 11 ; Nr. 10, no. 11 (2010-11-16), S.2269-2279
Datensatznummer 250008497
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/nhess-10-2269-2010.pdf
 
Zusammenfassung
Flood is known as one of the most distractive natural disaster worldwide. Therefore, its prediction is of great importance from the socio-economical point of view. Despite the great improvement in computational techniques and numerical weather prediction approaches, so far, in Iran, an acceptable flood prediction method has not yet been introduced. The main aim of this study is to recognize and classify the patterns of synoptic systems leading to torrential rainfalls in a watershed basin located in south-west of Iran. In this research, 20 major floods characterized by high rainfall intensities and severe damage were selected. The pattern, extension, and the direction of movement of the selected synoptic maps from surface to 500 hPa pressure levels were identified. Furthermore, the position of cyclones, anti-cyclones and mid-level trough lines were carefully tracked and classified into different groups. The results show that the major severe floods occurring in Dalaki watershed river basin are mainly influenced by strengthening of the center of Sudan heat low (SHL) and the coincidence moisture feeding by the Indian Ocean and Mediterranean Sea. It was found that simultaneous merging of the SHL system and Mediterranean frontal system would intensify the flood intensities over the basin. The mean positions of high pressures, low pressures, the Red Sea trough lines and 1015 hPa isobars of the major floods are also discussed.
 
Teil von