dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel A comparison of assimilation results from the ensemble Kalman Filter and a reduced-rank extended Kalman Filter
VerfasserIn X. Zang, P. Malanotte-Rizzoli
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 10, no. 6 ; Nr. 10, no. 6, S.477-491
Datensatznummer 250008204
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-10-477-2003.pdf
 
Zusammenfassung
The goal of this study is to compare the performances of the ensemble Kalman filter and a reduced-rank extended Kalman filter when applied to different dynamic regimes. Data assimilation experiments are performed using an eddy-resolving quasi-geostrophic model of the wind-driven ocean circulation. By changing eddy viscosity, this model exhibits two qualitatively distinct behaviors: strongly chaotic for the low viscosity case and quasi-periodic for the high viscosity case. In the reduced-rank extended Kalman filter algorithm, the model is linearized with respect to the time-mean from a long model run without assimilation, a reduced state space is obtained from a small number (100 for the low viscosity case and 20 for the high viscosity case) of leading empirical orthogonal functions (EOFs) derived from the long model run without assimilation. Corrections to the forecasts are only made in the reduced state space at the analysis time, and it is assumed that a steady state filter exists so that a faster filter algorithm is obtained. The ensemble Kalman filter is based on estimating the state-dependent forecast error statistics using Monte Carlo methods. The ensemble Kalman filter is computationally more expensive than the reduced-rank extended Kalman filter.The results show that for strongly nonlinear case, chaotic regime, about 32 ensemble members are sufficient to accurately describe the non-stationary, inhomogeneous, and anisotropic structure of the forecast error covariance and the performance of the reduced-rank extended Kalman filter is very similar to simple optimal interpolation and the ensemble Kalman filter greatly outperforms the reduced-rank extended Kalman filter. For the high viscosity case, both the reduced-rank extended Kalman filter and the ensemble Kalman filter are able to significantly reduce the analysis error and their performances are similar. For the high viscosity case, the model has three preferred regimes, each with distinct energy levels. Therefore, the probability density of the system has a multi-modal distribution and the error of the ensemble mean for the ensemble Kalman filter using larger ensembles can be larger than with smaller ensembles.
 
Teil von