dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Optimising training data for ANNs with Genetic Algorithms
VerfasserIn R. G. Kamp, H. H. G. Savenije
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 10, no. 4 ; Nr. 10, no. 4 (2006-09-07), S.603-608
Datensatznummer 250008145
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-10-603-2006.pdf
 
Zusammenfassung
Artificial Neural Networks (ANNs) have proved to be good modelling tools in hydrology for rainfall-runoff modelling and hydraulic flow modelling. Representative datasets are necessary for the training phase in which the ANN learns the model's input-output relations. Good and representative training data is not always available. In this publication Genetic Algorithms (GA) are used to optimise training datasets. The approach is tested with an existing hydraulic model in The Netherlands. An initial trainnig dataset is used for training the ANN. After optimisation with a GA of the training dataset the ANN produced more accurate model results.
 
Teil von