|
Titel |
Sensitivity of aerosol and cloud effects on radiation to cloud types: comparison between deep convective clouds and warm stratiform clouds over one-day period |
VerfasserIn |
S. S. Lee, L. J. Donner, V. T. J. Phillips |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1680-7316
|
Digitales Dokument |
URL |
Erschienen |
In: Atmospheric Chemistry and Physics ; 9, no. 7 ; Nr. 9, no. 7 (2009-04-08), S.2555-2575 |
Datensatznummer |
250007169
|
Publikation (Nr.) |
copernicus.org/acp-9-2555-2009.pdf |
|
|
|
Zusammenfassung |
Cloud and aerosol effects on radiation in two contrasting cloud types, a
deep mesoscale convective system (MCS) and warm stratocumulus clouds, are
simulated and compared. At the top of the atmosphere, 45–81% of
shortwave cloud forcing (SCF) is offset by longwave cloud forcing (LCF) in
the MCS, whereas warm stratiform clouds show the offset of less than ~20%. 28% of increased negative SCF is offset by increased LCF with
increasing aerosols in the MCS at the top of the atmosphere. However, the
stratiform clouds show the offset of just around 2–5%. Ice clouds as
well as liquid clouds play an important role in the larger offset in the
MCS. Lower cloud-top height and cloud depth, characterizing cloud types,
lead to the smaller offset of SCF by LCF and the offset of increased
negative SCF by increased LCF at high aerosol in stratocumulus clouds than
in the MCS. Supplementary simulations show that this dependence of
modulation of LCF on cloud depth and cloud-top height is also simulated
among different types of convective clouds. |
|
|
Teil von |
|
|
|
|
|
|