dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel LiDAR for monitoring mass movements in permafrost environments at the cirque Hinteres Langtal, Austria, between 2000 and 2008
VerfasserIn M. Avian, A. Kellerer-Pirklbauer, A. Bauer
Medientyp Artikel
Sprache Englisch
ISSN 1561-8633
Digitales Dokument URL
Erschienen In: Natural Hazards and Earth System Science ; 9, no. 4 ; Nr. 9, no. 4 (2009-07-07), S.1087-1094
Datensatznummer 250006873
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/nhess-9-1087-2009.pdf
 
Zusammenfassung
Permafrost areas receive more and more attention in terms of natural hazards in recent years due to ongoing global warming. Active rockglaciers are mixtures of debris and ice (of different origin) in high-relief environments indicating permafrost conditions for a substantial period of time. Style and velocity of the downward movement of this debris-ice-mass is influenced by topoclimatic conditions. The rockglacier Hinteres Langtalkar is stage of extensive modifications in the last decade as a consequence of an extraordinary high surface movement. Terrestrial laserscanning (or LiDAR) campaigns have been out once or twice per year since 2000 to monitor surface dynamics at the highly active front of the rockglacier. High resolution digital terrain models are the basis for annual and inter-annual analysis of surface elevation changes. Results show that the observed area shows predominantly positive surface elevation changes causing a consequent lifting of the surface over the entire period. Nevertheless a decreasing surface lifting of the observed area in the last three years leads to the assumption that the material transport from the upper part declines in the last years. Furthermore the rockglacier front is characterized by extensive mass wasting and partly disintegration of the rockglacier body. As indicated by the LiDAR results as well as from field evidence, this rockglacier front seems to represent a permafrost influenced landslide.
 
Teil von