dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The moisture response of soil heterotrophic respiration: interaction with soil properties
VerfasserIn F. E. Moyano, N. Vasilyeva, L. Bouckaert, F. Cook, J. Craine, J. Curiel Yuste, A. Don, D. Epron, P. Formanek, A. Franzluebbers, U. Ilstedt, T. Kätterer, V. Orchard, M. Reichstein, A. Rey, L. Ruamps, J.-A. Subke, I. K. Thomsen, C. Chenu
Medientyp Artikel
Sprache Englisch
ISSN 1726-4170
Digitales Dokument URL
Erschienen In: Biogeosciences ; 9, no. 3 ; Nr. 9, no. 3 (2012-03-28), S.1173-1182
Datensatznummer 250006852
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/bg-9-1173-2012.pdf
 
Zusammenfassung
Soil moisture is of primary importance for predicting the evolution of soil carbon stocks and fluxes, both because it strongly controls organic matter decomposition and because it is predicted to change at global scales in the following decades. However, the soil functions used to model the heterotrophic respiration response to moisture have limited empirical support and introduce an uncertainty of at least 4% in global soil carbon stock predictions by 2100. The necessity of improving the representation of this relationship in models has been highlighted in recent studies. Here we present a data-driven analysis of soil moisture-respiration relations based on 90 soils. With the use of linear models we show how the relationship between soil heterotrophic respiration and different measures of soil moisture is consistently affected by soil properties. The empirical models derived include main effects and moisture interaction effects of soil texture, organic carbon content and bulk density. When compared to other functions currently used in different soil biogeochemical models, we observe that our results can correct biases and reconcile differences within and between such functions. Ultimately, accurate predictions of the response of soil carbon to future climate scenarios will require the integration of soil-dependent moisture-respiration functions coupled with realistic representations of soil water dynamics.
 
Teil von