dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Toward an estimation of the relationship between cyclonic structures and damages at the ground in Europe
VerfasserIn F. Porcú, A. Carrassi
Medientyp Artikel
Sprache Englisch
ISSN 1561-8633
Digitales Dokument URL
Erschienen In: Natural Hazards and Earth System Science ; 9, no. 3 ; Nr. 9, no. 3 (2009-06-04), S.823-829
Datensatznummer 250006789
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/nhess-9-823-2009.pdf
 
Zusammenfassung
Cyclonic systems dominate European and Mediterranean meteorology throughout the year and often induce severe weather in terms of heavy and/or long-lasting precipitation with related phenomena such as strong winds and lightning. Surface cyclonic structures are often related to well defined precipitation patterns with different scales, duration and intensity. Cyclones confined in the upper troposphere, usually referred to as cut off low, may induce instability at lower levels and the development of convective precipitation.

In this work the occurrence of cyclonic events (discriminated between surface ones and cut-off lows) is analyzed and matched with an economic losses database to highlight a relation between the atmospheric structures and the impact on the social environment in terms of casualties and material damages. The study focus on the continental Europe and, based on the ERA-40 reanalysis, two databases of surface cyclones and cut-off lows have been constructed by means of automatic pattern recognition algorithms. The impact on the local communities is estimated from an insurance company record, which provides the location, date and type of the events, as well as related losses in terms of damages and casualties. Results show the relatively high impact of cyclonic structures on human life in Europe: most of the weather induced damages occur close to a cyclonic center, especially during warm months. Damages and human losses are more frequent from late summer to January, and precipitation is the most relevant meteorological damaging feature throughout the year.
 
Teil von