dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Extremum statistics: a framework for data analysis
VerfasserIn S. C. Chapman, G. Rowlands, N. W. Watkins
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 9, no. 5/6 ; Nr. 9, no. 5/6, S.409-418
Datensatznummer 250006555
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-9-409-2002.pdf
 
Zusammenfassung
Recent work has suggested that in highly correlated systems, such as sandpiles, turbulent fluids, ignited trees in forest fires and magnetization in a ferromagnet close to a critical point, the probability distribution of a global quantity (i.e. total energy dissipation, magnetization and so forth) that has been normalized to the first two moments follows a specific non-Gaussian curve. This curve follows a form suggested by extremum statistics, which is specified by a single parameter a (a = 1 corresponds to the Fisher-Tippett Type I ("Gumbel") distribution). Here we present a framework for testing for extremal statistics in a global observable. In any given system, we wish to obtain a, in order to distinguish between the different Fisher-Tippett asymptotes, and to compare with the above work. The normalizations of the extremal curves are obtained as a function of a. We find that for realistic ranges of data, the various extremal distributions, when normalized to the first two moments, are difficult to distinguish. In addition, the convergence to the limiting extremal distributions for finite data sets is both slow and varies with the asymptote. However, when the third moment is expressed as a function of a, this is found to be a more sensitive method.
 
Teil von