dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems?
VerfasserIn K. A. Smemo, J. B. Yavitt
Medientyp Artikel
Sprache Englisch
ISSN 1726-4170
Digitales Dokument URL
Erschienen In: Biogeosciences ; 8, no. 3 ; Nr. 8, no. 3 (2011-03-24), S.779-793
Datensatznummer 250005578
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/bg-8-779-2011.pdf
 
Zusammenfassung
Despite a large body of literature on microbial anaerobic oxidation of methane (AOM) in marine sediments and saline waters and its importance to the global methane (CH4) cycle, until recently little work has addressed the potential occurrence and importance of AOM in non-marine systems. This is particularly true for peatlands, which represent both a massive sink for atmospheric CO2 and a significant source of atmospheric CH4. Our knowledge of this process in peatlands is inherently limited by the methods used to study CH4 dynamics in soil and sediment and the assumption that there are no anaerobic sinks for CH4 in these systems. Studies suggest that AOM is CH4-limited and difficult to detect in potential CH4 production assays against a background of CH4 production. In situ rates also might be elusive due to background rates of aerobic CH4 oxidation and the difficulty in separating net and gross process rates. Conclusive evidence for the electron acceptor in this process has not been presented. Nitrate and sulfate are both plausible and favorable electron acceptors, as seen in other systems, but there exist theoretical issues related to the availability of these ions in peatlands and only circumstantial evidence suggests that these pathways are important. Iron cycling is important in many wetland systems, but recent evidence does not support the notion of CH4 oxidation via dissimilatory Fe(III) reduction or a CH4 oxidizing archaea in consortium with an Fe(III) reducer. Calculations based on published rates demonstrate that AOM might be a significant and underappreciated constraint on the global CH4 cycle, although much about the process is unknown, in vitro rates may not relate well to in situ rates, and projections based on those rates are fraught with uncertainty. We suggest electron transfer mechanisms, C flow and pathways, and quantifying in situ peatland AOM rates as the highest priority topics for future research.
 
Teil von