|
Titel |
Snow physics as relevant to snow photochemistry |
VerfasserIn |
F. Domine, M. Albert, T. Huthwelker, H.-W. Jacobi, A. A. Kokhanovsky, M. Lehning, G. Picard, W. R. Simpson |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1680-7316
|
Digitales Dokument |
URL |
Erschienen |
In: Atmospheric Chemistry and Physics ; 8, no. 2 ; Nr. 8, no. 2 (2008-01-16), S.171-208 |
Datensatznummer |
250005420
|
Publikation (Nr.) |
copernicus.org/acp-8-171-2008.pdf |
|
|
|
Zusammenfassung |
Snow on the ground is a complex multiphase photochemical reactor that
dramatically modifies the chemical composition of the overlying atmosphere.
A quantitative description of the emissions of reactive gases by snow
requires knowledge of snow physical properties. This overview details our
current understanding of how those physical properties relevant to snow
photochemistry vary during snow metamorphism. Properties discussed are
density, specific surface area, thermal conductivity, permeability, gas
diffusivity and optical properties. Inasmuch as possible, equations to
parameterize these properties as functions of climatic variables are
proposed, based on field measurements, laboratory experiments and theory.
The potential of remote sensing methods to obtain information on some snow
physical variables such as grain size, liquid water content and snow depth
are discussed. The possibilities for and difficulties of building a snow
photochemistry model by adapting current snow physics models are explored.
Elaborate snow physics models already exist, and including variables of
particular interest to snow photochemistry such as light fluxes and specific
surface area appears possible. On the other hand, understanding the nature
and location of reactive molecules in snow seems to be the greatest
difficulty modelers will have to face for lack of experimental data, and
progress on this aspect will require the detailed study of natural snow
samples. |
|
|
Teil von |
|
|
|
|
|
|