dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Contribution of advection to the carbon budget measured by eddy covariance at a steep mountain slope forest in Switzerland
VerfasserIn S. Etzold, N. Buchmann, W. Eugster
Medientyp Artikel
Sprache Englisch
ISSN 1726-4170
Digitales Dokument URL
Erschienen In: Biogeosciences ; 7, no. 8 ; Nr. 7, no. 8 (2010-08-17), S.2461-2475
Datensatznummer 250004933
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/bg-7-2461-2010.pdf
 
Zusammenfassung
We calculated the contribution of advection to the C budget measured by the eddy covariance (EC) technique for a steep and forested mountain site (CarboEurope site CH-Lae, Lägeren, Switzerland) during the growing season 2007 (May to August). Thereby we followed two approaches: (1) the physical correction of the EC data for directly measured advection terms and (2) the u filter approach that replaces periods with u below a site-specific threshold with empirically modelled fluxes. We found good agreement between the two approaches in terms of daily (linear regression slope: 0.78 ± 0.04, intercept: 0.68 ± 0.29 μmol m−2 s−1, adj. R2=0.78) and seasonal sums of gross fluxes (difference ≤ 12%), when using a u threshold of 0.3 m s−1 and correcting EC for horizontal advection only. Incorporating also vertical advection into the mass balance equation resulted in unrealistic and highly erratic fluxes. However, on a daily basis vertical advection cancelled out to nearly zero. The u filter seems to account primarily for respiration fluxes, which are mainly affected by horizontal advection. We could confirm our corrections by a cross-validation with independent approaches, such as soil respiration chamber measurements, light curves and energy budget closure. Our results show that flux measurements on steep sites with complex topography are possible. Actually, sloping sites seem to have the advantage over flat sites that advection measurements can be reduced to a simplified two-dimensional measurement approach due to the two-dimensional characteristics of the wind field at those sites.
 
Teil von