dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Technical Note: On methodologies for determining the size-normalised weight of planktic foraminifera
VerfasserIn C. J. Beer, R. Schiebel, P. A. Wilson
Medientyp Artikel
Sprache Englisch
ISSN 1726-4170
Digitales Dokument URL
Erschienen In: Biogeosciences ; 7, no. 7 ; Nr. 7, no. 7 (2010-07-16), S.2193-2198
Datensatznummer 250004897
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/bg-7-2193-2010.pdf
 
Zusammenfassung
The size-normalised weight (SNW) of planktic foraminifera, a measure of test wall thickness and density, is potentially a valuable palaeo-proxy for marine carbon chemistry. As increasing attention is given to developing this proxy it is important that methods are comparable between studies. Here, we compare SNW data generated using two different methods to account for variability in test size, namely (i) the narrow (50 μm range) sieve fraction method and (ii) the individually measured test size method. Using specimens from the 200–250 μm sieve fraction range collected in multinet samples from the North Atlantic, we find that sieving does not constrain size sufficiently well to isolate changes in weight driven by variations in test wall thickness and density from those driven by size. We estimate that the SNW data produced as part of this study are associated with an uncertainty, or error bar, of about ±11%. Errors associated with the narrow sieve fraction method may be reduced by decreasing the size of the sieve window, by using larger tests and by increasing the number tests employed. In situations where numerous large tests are unavailable, however, substantial errors associated with this sieve method remain unavoidable. In such circumstances the individually measured test size method provides a better means for estimating SNW because, as our results show, this method isolates changes in weight driven by variations in test wall thickness and density from those driven by size.
 
Teil von