|
Titel |
Comparison of energy fluxes at the land surface-atmosphere interface in an Alpine valley as simulated with different models |
VerfasserIn |
G. Grossi, L. Falappi |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1027-5606
|
Digitales Dokument |
URL |
Erschienen |
In: Hydrology and Earth System Sciences ; 7, no. 6 ; Nr. 7, no. 6, S.920-936 |
Datensatznummer |
250004864
|
Publikation (Nr.) |
copernicus.org/hess-7-920-2003.pdf |
|
|
|
Zusammenfassung |
Within the framework of a research project coupling meteorological and
hydrological models in mountainous areas a distributed Snow-Soil-Vegetation-Atmosphere
Transfer model was developed and applied to simulate the energy fluxes at the land
surface – atmosphere interface in an Alpine valley (Toce Valley - North Italy) during
selected flood events in the last decade. Energy fluxes simulated by the distributed
energy transfer model were compared with those simulated by a limited area meteorological
model for the event of June 1997 and the differences in the spatial and temporal
distribution. The Snow/Soil-Vegetation-Atmosphere Transfer model was also applied to
simulate the energy fluxes at the land surface-atmosphere interface for a single cell,
assumed to be representative of the Siberia site (Toce Valley), where a
micro-meteorological station was installed and operated for 2.5 months in autumn 1999.
The Siberia site is very close to the Nosere site, where a standard meteorological
station was measuring precipitation, air temperature and humidity, global and net
radiation and wind speed during the same special observing period. Data recorded by the
standard meteorological station were used to force the energy transfer model and simulate
the point energy fluxes at the Siberia site, while turbulent fluxes observed at the
Siberia site were used to derive the latent heat flux from the energy balance equation.
Finally, the hourly evapotranspiration flux computed by this procedure was compared
to the evapotranspiration flux simulated by the energy transfer model.
Keywords: energy exchange processes, land surface-atmosphere interactions, turbulent
fluxes |
|
|
Teil von |
|
|
|
|
|
|