dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Artificial neural-network technique for precipitation nowcasting from satellite imagery
VerfasserIn G. Rivolta, F. S. Marzano, E. Coppola, M. Verdecchia
Medientyp Artikel
Sprache Englisch
ISSN 1680-7340
Digitales Dokument URL
Erschienen In: 7th Plinius Conference on Mediterranean Storms (2005) ; Nr. 7 (2006-02-02), S.97-103
Datensatznummer 250004275
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/adgeo-7-97-2006.pdf
 
Zusammenfassung
The term nowcasting reflects the need of timely and accurate predictions of risky situations related to the development of severe meteorological events. In this work the objective is the very short term prediction of the rainfall field from geostationary satellite imagery entirely based on neural network approach. The very short-time prediction (or nowcasting) process consists of two steps: first, the infrared radiance field measured from geostationary satellite (Meteosat 7) is projected ahead in time (30 min or 1 h); secondly, the projected radiances are used to estimate the rainfall field by means of a calibrated microwave-based combined algorithm. The methodology is discussed and its accuracy is quantified by means of error indicators. An application to a satellite observation of a rainfall event over Central Italy is finally shown and evaluated.
 
Teil von