|
Titel |
Effect of smoke and clouds on the transmissivity of photosynthetically active radiation inside the canopy |
VerfasserIn |
M. A. Yamasoe, C. Randow, A. O. Manzi, J. S. Schafer, T. F. Eck, B. N. Holben |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1680-7316
|
Digitales Dokument |
URL |
Erschienen |
In: Atmospheric Chemistry and Physics ; 6, no. 6 ; Nr. 6, no. 6 (2006-05-22), S.1645-1656 |
Datensatznummer |
250003829
|
Publikation (Nr.) |
copernicus.org/acp-6-1645-2006.pdf |
|
|
|
Zusammenfassung |
Biomass burning activities emit high concentrations of aerosol particles to
the atmosphere. Such particles can interact with solar radiation, decreasing
the amount of light reaching the surface and increasing the fraction of
diffuse radiation through scattering processes, and thus has implications
for photosynthesis within plant canopies. This work reports results from
photosynthetically active radiation (PAR) and aerosol optical depth (AOD)
measurements conducted simultaneously at Reserva Biológica do Jaru
(Rondonia State, Brazil) during LBA/SMOCC (Large-Scale Biosphere-Atmosphere
Experiment in Amazonia/ Smoke, Aerosols, Clouds, Rainfall, and Climate) and
RaCCI (Radiation, Cloud, and Climate Interactions in the Amazon during the
Dry-to-Wet Transition Season) field experiments from 15 September to 15
November 2002. AOD values were retrieved from an AERONET (Aerosol Robotic
Network) radiometer, MODIS (Moderate Resolution Spectroradiometer) and a
portable sunphotometer from the United States Department of Agriculture –
Forest Service. Significant reduction of PAR irradiance at the top of the
canopy was observed due to the smoke aerosol particles layer. This radiation
reduction affected turbulent fluxes of sensible and latent heats. The
increase of AOD also enhanced the transmission of PAR inside the canopy. As
a consequence, the availability of diffuse radiation was enhanced due to
light scattering by the aerosol particles. A complex relationship was
identified between light availability inside the canopy and net ecosystem
exchange (NEE). The results showed that the increase of aerosol optical
depth corresponded to an increase of CO2 uptake by the vegetation.
However, for even higher AOD values, the corresponding NEE was lower than
for intermediate values. As expected, water vapor pressure deficit (VPD),
retrieved at 28m height inside the canopy, can also affect photosynthesis.
A decrease in NEE was observed as VPD increased. Further studies are needed
to better understand these findings, which were reported for the first time
for the Amazon region under smoky conditions. |
|
|
Teil von |
|
|
|
|
|
|