dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Coral Cd/Ca and Mn/Ca records of ENSO variability in the Gulf of California
VerfasserIn J. D. Carriquiry, J. A. Villaescusa
Medientyp Artikel
Sprache Englisch
ISSN 1814-9324
Digitales Dokument URL
Erschienen In: Climate of the Past ; 6, no. 3 ; Nr. 6, no. 3 (2010-06-28), S.401-410
Datensatznummer 250003550
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/cp-6-401-2010.pdf
 
Zusammenfassung
We analyzed the trace element ratios Cd/Ca and Mn/Ca in three coral colonies (Porites panamensis (1967–1989), Pavona clivosa (1967–1989) and Pavona gigantea (1979–1989)) from Cabo Pulmo reef, Southern Gulf of California, Mexico, to assess the oceanographic changes caused by El Niño – Southern Oscillation (ENSO) events in the Eastern Tropical North Pacific (ETNP). Interannual variations in the coral Cd/Ca and Mn/Ca ratios showed clear evidence that incorporation of Cd and Mn in the coral skeleton was influenced by ENSO conditions, but the response for each metal was controlled by different processes. The Mn/Ca ratios were significantly higher during ENSO years (p<0.05) relative to non-ENSO years for the three species of coral. In contrast, the Cd/Ca was systematically lower during ENSO years, but the difference was significant (p<0.05) only in Pavona gigantea. A decrease in the incorporation of Cd and a marked increase in Mn indicated strongly reduced vertical mixing in the Gulf of California during the mature phase of El Niño. The oceanic warming during El Niño events produces a relaxation of upwelling and a stabilization of the thermocline, which may act as a physical barrier limiting the transport of Cd from deeper waters into the surface layer. In turn, this oceanic condition can increase the residence time of particulate-Mn in surface waters, allowing an increase in the photo-reduction of particulate-Mn and the release of available Mn into the dissolved phase. These results support the use of Mn/Ca and Cd/Ca ratios in biogenic carbonates as tracers of increases in ocean stratification and trade wind weakening and/or collapse in the ETNP during ENSO episodes.
 
Teil von