dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel An intercomparison of radar-based liquid cloud microphysics retrievals and implications for model evaluation studies
VerfasserIn D. Huang, C. Zhao, M. Dunn, X. Dong, G. G. Mace, M. P. Jensen, S. Xie, Y. Liu
Medientyp Artikel
Sprache Englisch
ISSN 1867-1381
Digitales Dokument URL
Erschienen In: Atmospheric Measurement Techniques ; 5, no. 6 ; Nr. 5, no. 6 (2012-06-25), S.1409-1424
Datensatznummer 250002974
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/amt-5-1409-2012.pdf
 
Zusammenfassung
This paper presents a statistical comparison of three cloud retrieval products of the Atmospheric Radiation Measurement (ARM) program at the Southern Great Plains (SGP) site from 1998 to 2006: MICROBASE, University of Utah (UU), and University of North Dakota (UND) products. The probability density functions of the various cloud liquid water content (LWC) retrievals appear to be consistent with each other. While the mean MICROBASE and UU cloud LWC retrievals agree well in the middle of cloud, the discrepancy increases to about 0.03 gm−3 at cloud top and cloud base. Alarmingly large differences are found in the droplet effective radius (re) retrievals. The mean MICROBASE re is more than 6 μm lower than the UU re, whereas the discrepancy is reduced to within 1 μm if columns containing raining and/or mixed-phase layers are excluded from the comparison. A suite of stratified comparisons and retrieval experiments reveal that the LWC difference stems primarily from rain contamination, partitioning of total liquid later path (LWP) into warm and supercooled liquid, and the input cloud mask and LWP. The large discrepancy among the re retrievals is mainly due to rain contamination and the presence of mixed-phase layers. Since rain or ice particles are likely to dominate radar backscattering over cloud droplets, the large discrepancy found in this paper can be thought of as a physical limitation of single-frequency radar approaches. It is therefore suggested that data users should use the retrievals with caution when rain and/or mixed-phase layers are present in the column.
 
Teil von