dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Spatial prediction models for landslide hazards: review, comparison and evaluation
VerfasserIn A. Brenning
Medientyp Artikel
Sprache Englisch
ISSN 1561-8633
Digitales Dokument URL
Erschienen In: Natural Hazards and Earth System Science ; 5, no. 6 ; Nr. 5, no. 6 (2005-11-07), S.853-862
Datensatznummer 250002881
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/nhess-5-853-2005.pdf
 
Zusammenfassung
The predictive power of logistic regression, support vector machines and bootstrap-aggregated classification trees (bagging, double-bagging) is compared using misclassification error rates on independent test data sets. Based on a resampling approach that takes into account spatial autocorrelation, error rates for predicting "present" and "future" landslides are estimated within and outside the training area. In a case study from the Ecuadorian Andes, logistic regression with stepwise backward variable selection yields lowest error rates and demonstrates the best generalization capabilities. The evaluation outside the training area reveals that tree-based methods tend to overfit the data.
 
Teil von