dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel A non-linear neural network technique for updating of river flow forecasts
VerfasserIn A. Y. Shamseldin, K. M. O'Connor
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 5, no. 4 ; Nr. 5, no. 4, S.577-598
Datensatznummer 250002710
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-5-577-2001.pdf
 
Zusammenfassung
A non-linear Auto-Regressive Exogenous-input model (NARXM) river flow forecasting output-updating procedure is presented. This updating procedure is based on the structure of a multi-layer neural network. The NARXM-neural network updating procedure is tested using the daily discharge forecasts of the soil moisture accounting and routing (SMAR) conceptual model operating on five catchments having different climatic conditions. The performance of the NARXM-neural network updating procedure is compared with that of the linear Auto-Regressive Exogenous-input (ARXM) model updating procedure, the latter being a generalisation of the widely used Auto-Regressive (AR) model forecast error updating procedure. The results of the comparison indicate that the NARXM procedure performs better than the ARXM procedure.

Keywords: Auto-Regressive Exogenous-input model, neural network, output-updating procedure, soil moisture accounting and routing (SMAR) model

 
Teil von