dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Uncertainties in modelling CH4 emissions from northern wetlands in glacial climates: effect of hydrological model and CH4 model structure
VerfasserIn C. Berrittella, J. Huissteden
Medientyp Artikel
Sprache Englisch
ISSN 1814-9324
Digitales Dokument URL
Erschienen In: Climate of the Past ; 5, no. 3 ; Nr. 5, no. 3 (2009-07-21), S.361-373
Datensatznummer 250002539
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/cp-5-361-2009.pdf
 
Zusammenfassung
Methane (CH4) fluxes from northern wetlands may have influenced atmospheric CH4 concentrations at climate warming phases during the last 800 000 years and during the present global warming. Including these CH4 fluxes in earth system models is essential to understand feedbacks between climate and atmospheric composition.

Attempts to model CH4 fluxes from wetlands have previously been undertaken using various approaches. Here, we test a process-based wetland CH4 flux model (PEATLAND-VU) which includes details of soil-atmosphere CH4 transport. The model has been used to simulate CH4 emissions from continental Europe in previous glacial climates and the current climate.

This paper presents results regarding the sensitivity of modeling glacial terrestrial CH4 fluxes to (a) basic tuning parameters of the model, (b) different approaches in modeling of the water table, and (c) model structure. In order to test the model structure, PEATLAND-VU was compared to a simpler modeling approach based on wetland primary production estimated from a vegetation model (BIOME 3.5). The tuning parameters are the CH4 production rate from labile organic carbon and its temperature sensitivity.

The modelled fluxes prove comparatively insensitive to hydrology representation, while sensitive to microbial parameters and model structure. Glacial climate emissions are also highly sensitive to assumptions about the extent of ice cover and exposed seafloor. Wetland expansion over low relief exposed seafloor areas have compensated for a decrease of wetland area due to continental ice cover.
 
Teil von