dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Actinometric measurements of NO2 photolysis frequencies in the atmosphere simulation chamber SAPHIR
VerfasserIn B. Bohn, F. Rohrer, T. Brauers, A. Wahner
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 5, no. 2 ; Nr. 5, no. 2 (2005-02-15), S.493-503
Datensatznummer 250002359
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-5-493-2005.pdf
 
Zusammenfassung
The simulation chamber SAPHIR at Forschungszentrum Jülich has UV permeable teflon walls facilitating atmospheric photochemistry studies under the influence of natural sunlight. Because the internal radiation field is strongly affected by construction elements, we use external, radiometric measurements of spectral actinic flux and a model to calculate mean photolysis frequencies for the chamber volume Bohn04B. In this work we determine NO2 photolysis frequencies j(NO2) within SAPHIR using chemical actinometry by injecting NO2 and observing the chemical composition during illumination under various external conditions. In addition to a photo-stationary approach, a time-dependent method was developed to analyse the data. These measurements had two purposes. Firstly, to check the model predictions with respect to diurnal and seasonal variations in the presence of direct sunlight and secondly to obtain an absolute calibration factor for the combined radiometry-model approach. We obtain a linear correlation between calculated and actinometric j(NO2). A calibration factor of 1.34±0.10 is determined, independent of conditions in good approximation. This factor is in line with expectations and can be rationalised by internal reflections within the chamber. Taking into account the uncertainty of the actinometric j(NO2), an accuracy of 13% is estimated for the determination of j(NO2) in SAPHIR. In separate dark experiments a rate constant of (1.93±0.12)x10-14 cm3 s-1 was determined for the NO+O3 reaction at 298K using analytical and numerical methods of data analysis.
 
Teil von