dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Prediction of slope instabilities due to deep-seated gravitational creep
VerfasserIn E. Brückl, M. Parotidis
Medientyp Artikel
Sprache Englisch
ISSN 1561-8633
Digitales Dokument URL
Erschienen In: Natural Hazards and Earth System Science ; 5, no. 2 ; Nr. 5, no. 2 (2005-01-31), S.155-172
Datensatznummer 250002328
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/nhess-5-155-2005.pdf
 
Zusammenfassung
Deep-seated gravitational creep in rock slopes, rock-flow or sackung is a special category of mass-movement, in which long-lasting small-scale movements prevail. The prime causes of these mass movements in the Alpine area seem to have been glacial retreat at ~15000 a B.P. Many sackung stabilize and some undergo the transition to rapid sliding. This paper concentrates on four mass-movements in crystalline complexes of the Austrian Alps which have been investigated for aspects of deep-seated gravitational creep and prediction of the transition to rapid sliding. The present-day extent of the creeping or sliding of the rock mass has been modelled by a process of progressive, stress induced damage. Subcritical crack growth has been assumed to control this process and also the velocity of the mass movement. A sliding surface and decreasing Coulomb stress at this surface as a function of slip is a precondition for instability. The development of the four examples has been modelled successfully by a rotational slider block model and the conception of subcritical crack growth and progressive smoothing of the sliding surface. The interrelations between velocity, pore water pressure, seismic activity and the state of the sliding surface have been derived. Finally we discuss how the hypothesis inherent in the models presented could be validated and used for prediction.
 
Teil von