dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Phase space structure and fractal trajectories in 1½ degree of freedom Hamiltonian systems whose time dependence is quasiperiodic
VerfasserIn M. G. Brown
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 5, no. 2 ; Nr. 5, no. 2, S.69-74
Datensatznummer 250002322
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-5-69-1998.pdf
 
Zusammenfassung
We consider particle motion in nonautonomous 1 degree of freedom Hamiltonian systems for which H(p,q,t) depends on N periodic functions of t with incommensurable frequencies. It is shown that in near-integrable systems of this type, phase space is partitioned into nonintersecting regular and chaotic regions. In this respect there is no different between the N = 1 (periodic time dependence) and the N = 2, 3, ... (quasi-periodic time dependence) problems. An important consequence of this phase space structure is that the mechanism that leads to fractal properties of chaotic trajectories in systems with N = 1 also applies to the larger class of problems treated here. Implications of the results presented to studies of ray dynamics in two-dimensional incompressible fluid flows are discussed.
 
Teil von