dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Quantification of gas-phase glyoxal and methylglyoxal via the Laser-Induced Phosphorescence of (methyl)GLyOxal Spectrometry (LIPGLOS) Method
VerfasserIn S. B. Henry, A. Kammrath, F. N. Keutsch
Medientyp Artikel
Sprache Englisch
ISSN 1867-1381
Digitales Dokument URL
Erschienen In: Atmospheric Measurement Techniques ; 5, no. 1 ; Nr. 5, no. 1 (2012-01-23), S.181-192
Datensatznummer 250002315
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/amt-5-181-2012.pdf
 
Zusammenfassung
Glyoxal and methylglyoxal are key products of oxidative photochemistry in the lower troposphere. Reliable measurements of such compounds are critical for testing our understanding of volatile organic compound (VOC) processing in this region. We present a new method for obtaining sensitive, high time resolution, in situ measurements of these compounds via laser-induced phosphorescent decays. By exploiting the unique phosphorescent lifetimes for each molecule, this method achieves speciation and high-sensitivity quantification of both molecules. With two different light sources at different wavelengths, the lowest 3σ limits of detection observed during calibration with this method are 11 pptv in 5 min for glyoxal and 243 pptv in 5 min for methylglyoxal. During ambient measurements of glyoxal, a 3σ limit of detection of <4.4 pptv in 5 min was observed. Additionally, this method enables the simultaneous measurement of both glyoxal and methylglyoxal using a single, non-wavelength-tunable light source, which will allow for the development of inexpensive (~$40 k) and turnkey instrumentation. The simplicity and affordability of this new instrumentation would enable the construction of a long-term, spatially distributed database of these two key species. This chemical map can be used to constrain or drive regional or global models as well as provide verification of satellite observations.
 
Teil von