dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Diode laser-based cavity ring-down instrument for NO3, N2O5, NO, NO2 and O3 from aircraft
VerfasserIn N. L. Wagner, W. P. Dubé, R. A. Washenfelder, C. J. Young, I. B. Pollack, T. B. Ryerson, S. S. Brown
Medientyp Artikel
Sprache Englisch
ISSN 1867-1381
Digitales Dokument URL
Erschienen In: Atmospheric Measurement Techniques ; 4, no. 6 ; Nr. 4, no. 6 (2011-06-28), S.1227-1240
Datensatznummer 250002019
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/amt-4-1227-2011.pdf
 
Zusammenfassung
This article presents a diode laser-based, cavity ring-down spectrometer for simultaneous in situ measurements of four nitrogen oxide species, NO3, N2O5, NO, NO2, as well as O3, designed for deployment on aircraft. The instrument measures NO3 and NO2 by optical extinction at 662 nm and 405 nm, respectively; N2O5 is measured by thermal conversion to NO3, while NO and O3 are measured by chemical conversion to NO2. The instrument has several advantages over previous instruments developed by our group for measurement of NO2, NO3 and N2O5 alone, based on a pulsed Nd:YAG and dye laser. First, the use of continuous wave diode lasers reduces the requirements for power and weight and eliminates hazardous materials. Second, detection of NO2 at 405 nm is more sensitive than our previously reported 532 nm instrument, and does not have a measurable interference from O3. Third, the instrument includes chemical conversion of NO and O3 to NO2 to provide measurements of total NOx (= NO + NO2) and Ox (= NO2 + O3) on two separate channels; mixing ratios of NO and O3 are determined by subtraction of NO2. Finally, all five species are calibrated against a single standard based on 254 nm O3 absorption to provide high accuracy. Disadvantages include an increased sensitivity to water vapor on the 662 nm NO3 and N2O5 channels and a modest reduction in sensitivity for these species compared to the pulsed laser instrument. The in-flight detection limit for both NO3 and N2O5 is 3 pptv (2 σ, 1 s) and for NO, NO2 and O3 is 140, 90, and 120 pptv (2 σ, 1 s) respectively. Demonstrated performance of the instrument in a laboratory/ground based environment is better by approximately a factor of 2–3. The NO and NO2 measurements are less precise than research-grade chemiluminescence instruments. However, the combination of these five species in a single instrument, calibrated to a single analytical standard, provides a complete and accurate picture of nighttime nitrogen oxide chemistry. The instrument performance is demonstrated using data acquired during a recent field campaign in California.
 
Teil von