dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Copper incorporation in foraminiferal calcite: results from culturing experiments
VerfasserIn L. J. Nooijer, G. J. Reichart, A. Dueñas-Bohórquez, M. Wolthers, S. R. Ernst, P. R. D. Mason, G. J. Zwaan
Medientyp Artikel
Sprache Englisch
ISSN 1726-4170
Digitales Dokument URL
Erschienen In: Biogeosciences ; 4, no. 4 ; Nr. 4, no. 4 (2007-07-10), S.493-504
Datensatznummer 250001849
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/bg-4-493-2007.pdf
 
Zusammenfassung
A partition coefficient for copper (DCu) in foraminiferal calcite has been determined by culturing individuals of two benthic species under controlled laboratory conditions. The partition coefficient of a trace element (TE) is an emperically determined relation between the TE/Ca ratio in seawater and the TE/Ca ratio in foraminiferal calcite and has been established for many divalent cations. Despite its potential to act as a tracer of human-induced, heavy metal pollution, data is not yet available for copper. Since partition coefficients are usually a function of multiple factors (seawater temperature, pH, salinity, metabolic activity of the organism, etc.), we chose to analyze calcite from specimens cultured under controlled laboratory conditions. They were subjected to different concentrations of Cu2+ (0.1–20 µmol/l) and constant temperature (10 and 20°C), seawater salinity and pH. We monitored the growth of new calcite in specimens of the temperate, shallow-water foraminifer Ammonia tepida and in the tropical, symbiont-bearing Heterostegina depressa. Newly formed chambers were analyzed for Cu/Ca ratios by laser ablation-ICP-MS. The estimated partition coefficient (0.1–0.4) was constant to within experimental error over a large range of (Cu/Ca)seawater ratios and was remarkably similar for both species. Neither did the presence or absence of symbionts affect the DCu, nor did we find a significant effect of temperature or salinity on Cu-uptake.
 
Teil von