dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Influence of stratospheric airmasses on tropospheric vertical O3 columns based on GOME (Global Ozone Monitoring Experiment) measurements and backtrajectory calculation over the Pacific
VerfasserIn A. Ladstätter-Weißenmayer, J. Meyer-Arnek, A. Schlemm, J. P. Burrows
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 4, no. 4 ; Nr. 4, no. 4 (2004-06-21), S.903-909
Datensatznummer 250001827
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-4-903-2004.pdf
 
Zusammenfassung
Satellite based GOME (Global Ozone Measuring experiment) data are used to characterize the amount of tropospheric ozone over the tropical Pacific. Tropospheric ozone was determined from GOME data using the Tropospheric Excess Method (TEM). In the tropical Pacific a significant seasonal variation is detected. Tropospheric excess ozone is enhanced during the biomass burning season from September to November due to outflow from the continents. In September 1999 GOME data reveal an episode of increased excess ozone columns over Tahiti (18.0° S; 149.0° W) (Eastern Pacific) compared to Am. Samoa (14.23° S; 170.56° W) and Fiji (18.13° S; 178.40° E), both situated in the Western Pacific. Backtrajectory calculations show that none of the airmasses arriving over the three locations experienced anthropogenic pollution (e. g. biomass burning). Consequently other sources of ozone have to be considered. One possible process leading to an increase of tropospheric ozone is stratosphere-troposphere-exchange. An analysis of the potential vorticity along trajectories arriving above each of the locations reveals that airmasses at Tahiti are subject to enhanced stratospheric influence, compared to Am. Samoa and Fiji. As a result this study shows clear incidents of transport of airmasses from the stratosphere into the troposphere.
 
Teil von