dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The ring current: a short biography
VerfasserIn A. Egeland, W. J. Burke
Medientyp Artikel
Sprache Englisch
ISSN 2190-5010
Digitales Dokument URL
Erschienen In: History of Geo- and Space Sciences ; 3, no. 2 ; Nr. 3, no. 2 (2012-08-06), S.131-142
Datensatznummer 250001016
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hgss-3-131-2012.pdf
 
Zusammenfassung
The "ring current'' grows in the inner magnetosphere during magnetic storms and contributes significantly to characteristic perturbations to the Earth's field observed at low-latitudes. This paper outlines how understanding of the ring current evolved during the half-century intervals before and after humans gained direct access to space. Its existence was first postulated in 1910 by Carl Størmer to explain the locations and equatorward migrations of aurorae under stormtime conditions. In 1917 Adolf Schmidt applied Størmer's ring-current hypothesis to explain the observed negative perturbations in the Earth's magnetic field. More than another decade would pass before Sydney Chapman and Vicenzo Ferraro argued for its necessity to explain magnetic signatures observed during the main phases of storms. Both the Størmer and Chapman–Ferraro models had difficulties explaining how solar particles entered and propagated in the magnetosphere to form the ring current. During the early 1950s Hannes Alfvén correctly argued that the ring current was a collective plasma effect, but failed to explain particle entry. The discovery of a weak but persistent interplanetary magnetic field embedded in a continuous solar wind provided James Dungey with sufficient evidence to devise the magnetic merging-reconnection model now regarded as the basis for understanding magnetospheric and auroral activity. In the mid-1960s Louis Frank showed that ions in the newly discovered plasma sheet had the energy spectral characteristics needed to explain the ring current's origin. The introduction of ion mass spectrometers on space missions during the 1970s revealed that O+ ions from the ionosphere contribute large fractions of the ring current's energy content. Precisely how cold O+ ions in the ionosphere are accelerated to ring-current energies still challenges scientific understanding.
 
Teil von