dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Technology and human purpose: the problem of solids transport on the Earth's surface
VerfasserIn P. K. Haff
Medientyp Artikel
Sprache Englisch
ISSN 2190-4979
Digitales Dokument URL
Erschienen In: Earth System Dynamics ; 3, no. 2 ; Nr. 3, no. 2 (2012-11-14), S.149-156
Datensatznummer 250001007
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/esd-3-149-2012.pdf
 
Zusammenfassung
Displacement of mass of limited deformability ("solids") on the Earth's surface is opposed by friction and (the analog of) form resistance – impediments relaxed by rotational motion, self-powering of mass units, and transport infrastructure. These features of solids transport first evolved in the biosphere prior to the emergence of technology, allowing slope-independent, diffusion-like motion of discrete objects as massive as several tons, as illustrated by animal foraging and movement along game trails. However, high-energy-consumption technology powered by fossil fuels required a mechanism that could support fast advective transport of solids, i.e., long-distance, high-volume, high-speed, unidirectional, slope-independent transport across the land surface of materials like coal, containerized fluids, minerals, and economic goods. Pre-technology nature was able to sustain regional- and global-scale advection only in the limited form of piggybacking on geophysical flows of water (river sediment) and air (dust). The appearance of a mechanism for sustained advection of solids independent of fluid flows and gravity appeared only upon the emergence of human purpose. Purpose enables solids advection by, in effect, simulating a continuous potential gradient, otherwise lacking, between discrete and widely separated fossil-fuel energy sources and sinks. Invoking purpose as a mechanism in solids advection is an example of the need to import anthropic principles and concepts into the language and methodology of modern Earth system dynamics. As part of the emergence of a generalized solids advection mechanism, several additional transport requirements necessary to the function of modern large-scale technological systems were also satisfied. These include spatially accurate delivery of advected payload, targetability to essentially arbitrarily located destinations (such as cities), and independence of structure of advected payload from transport mechanism. The latter property enables the transport of an onboard power supply and delivery of persistent-memory, high-information-content payload, such as technological artifacts ("parts").
 
Teil von