dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Unpredictability of internal M2
VerfasserIn H. Haren
Medientyp Artikel
Sprache Englisch
ISSN 1812-0784
Digitales Dokument URL
Erschienen In: Ocean Science ; 3, no. 2 ; Nr. 3, no. 2 (2007-06-15), S.337-344
Datensatznummer 250000932
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/os-3-337-2007.pdf
 
Zusammenfassung
Current observations from a shelf sea, continental slopes and the abyssal North-East Atlantic Ocean are all dominated by the semidiurnal lunar (M2) tide. It is shown that motions at M2 vary at usually large barotropic and coherent baroclinic scales, >50 km horizontally and >0.5 H vertically. H represents the waterdepth. Such M2-scales are observed even close to topography, the potential source of baroclinic, "internal" tidal waves. In contrast, incoherent small-scale, ~10 km horizontally and ~0.1 H vertically, baroclinic motions are dominated around f, the local inertial frequency, and/or near 2Ω≈S2, the semidiurnal solar tidal frequency. Ω represents the Earth's rotational vector. This confirms earlier suggestions that small-scale baroclinic M2-motions generally do not exist in the ocean in any predictable manner, except in beams very near, <10 km horizontally, to their source. As a result, M2-motions are not directly important for generating shear and internal wave induced mixing. Indirectly however, they may contribute to ocean mixing if transfer to small-scale motions at f and/or S2 and at high internal wave frequencies can be proven. Also far from topography, small-scale motions are found at either one or both of the latter frequencies. Different suggestions for the scales at these particular frequencies are discussed, ranging from the variability of "background" density gradients and associated divergence and focusing of internal wave rays to the removal of the internal tidal energy by non-linear interactions. Near f and S2 particular short-wave inertio-gravity wave bounds are found in the limits of strong and very weak stratification, which are often observed in small-scale layers.
 
Teil von