dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Development of a Bioaerosol single particle detector (BIO IN) for the Fast Ice Nucleus CHamber FINCH
VerfasserIn U. Bundke, B. Reimann, B. Nillius, R. Jaenicke, H. Bingemer
Medientyp Artikel
Sprache Englisch
ISSN 1867-1381
Digitales Dokument URL
Erschienen In: Atmospheric Measurement Techniques ; 3, no. 1 ; Nr. 3, no. 1 (2010-02-23), S.263-271
Datensatznummer 250000827
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/amt-3-263-2010.pdf
 
Zusammenfassung
In this work we present the setup and first tests of our new BIO IN detector. This detector was constructed to classify atmospheric ice nuclei (IN) for their biological content. It is designed to be coupled to the Fast Ice Nucleus CHamber FINCH. If one particle acts as an ice nucleus, it will be at least partly covered with ice at the end of the development section of the FINCH chamber. The device combines an auto-fluorescence detector and a circular depolarization detector for simultaneous detection of biological material and discrimination between water droplets, ice crystals and non activated large aerosol particles. The excitation of biological material with UV light and analysis of auto-fluorescence is a common principle used for flow cytometry, fluorescence microscopy, spectroscopy and imaging. The detection of auto-fluorescence of airborne single particles demands some more experimental effort. However, expensive commercial sensors are available for special purposes, e.g. size distribution measurements. But these sensors will not fit the specifications needed for the FINCH IN counter (e.g. high sample flow of up 10 LPM).

The newly developed -low cost- BIO IN sensor uses a single high-power UV LED for the electronic excitation instead of much more expensive UV lasers. Other key advantages of the new sensor are the low weight, compact size, and the little effect on the aerosol sample, which allows it to be coupled with other instruments for further analysis.

The instrument will be flown on one of the first missions of the new German research aircraft "HALO" (High Altitude and LOng range).
 
Teil von