dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Modeling the nitrogen fluxes in the Black Sea using a 3D coupledhydrodynamical-biogeochemical model: transport versus biogeochemicalprocesses, exchanges across the shelf break and comparison of the shelf anddeep sea ecodynamics
VerfasserIn M. Gregoire, J. M. Beckers
Medientyp Artikel
Sprache Englisch
ISSN 1726-4170
Digitales Dokument URL
Erschienen In: Biogeosciences ; 1, no. 1 ; Nr. 1, no. 1 (2004-10-05), S.33-61
Datensatznummer 250000070
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/bg-1-33-2004.pdf
 
Zusammenfassung
A 6-compartment biogeochemical model of nitrogen cycling and plankton productivity has been coupled with a 3D general circulation model in an enclosed environment (the Black Sea) so as to quantify and compare, on a seasonal and annual scale, the typical internal biogeochemical functioning of the shelf and of the deep sea as well as to estimate the nitrogen and water exchanges at the shelf break. Model results indicate that the annual nitrogen net export to the deep sea roughly corresponds to the annual load of nitrogen discharged by the rivers on the shelf.

The model estimated vertically integrated gross annual primary production is 130gCm-2yr-1 for the whole basin, 220gCm-2yr-1 for the shelf and 40gCm-2yr-1 for the central basin. In agreement with sediment trap observations, model results indicate a rapid and efficient recycling of particulate organic matter in the sub-oxic portion of the water column (60-80m) of the open sea. More than 95% of the PON produced in the euphotic layer is recycled in the upper 100m of the water column, 87% in the upper 80 m and 67% in the euphotic layer. The model estimates the annual export of POC towards the anoxic layer to 4 1010molyr-1. This POC is definitely lost for the system and represents 2% of the annual primary production of the open sea.

 
Teil von