|
Titel |
Surface flow structure of the Gulf Stream from composite imagery and satellite-tracked drifters |
VerfasserIn |
C. P. Mullen, A. D. Jr. Kirwan |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1023-5809
|
Digitales Dokument |
URL |
Erschienen |
In: Nonlinear Processes in Geophysics ; 1, no. 1 ; Nr. 1, no. 1, S.64-71 |
Datensatznummer |
250000059
|
Publikation (Nr.) |
copernicus.org/npg-1-64-1994.pdf |
|
|
|
Zusammenfassung |
A unique set of coutemporaneous satellite-tracked drifters and
five-day composite Advanced Very High Resolution Radionmeter (AVHRR) satellite imagery of
the North Atlantic has been analyzed to examine the surface flow structure of the Gulf
Stream. The study region was divided into two sections, greater than 37° N and less than
37° N, in order to answer the question of geographic variability. Fractal and spectral
analyses methods were applied to the data. Fractal analysis of the Lagrangian trajectories
showed a fractal dimension of 1.21 + 0.02 with a scaling range of 83 - 343 km. The
fractal dimension of the temperature fronts of the composite imagery is similar for the
two regions with D = 1.11 + 0.01 over a scaling range of 4 - 44 km. Spectral analysis
also reports a fairly consistent value for the spectral slope and its scaling range.
Therefore, we conclude there is no geographic variability in the data set.
A suitable scaling range for this contemporaneous data set is 80 - 200 km which is
consistent with the expected physical conditions in the region. Finally, we address the
idea of using five-day composite imagery to infer the surface flow of the Gulf Stream.
Close analyses of the composite thermal fronts and the Lagrangian drifter trajectories
show that the former is not a good indicator of the latter. |
|
|
Teil von |
|
|
|
|
|
|